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A mathematical model reveals the influence
of population heterogeneity on herd immunity
to SARS-CoV-2
Tom Britton1*, Frank Ball2, Pieter Trapman1

Despite various levels of preventive measures, in 2020, many countries have suffered severely from
the coronavirus 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus. Using a model, we show that population heterogeneity can affect
disease-induced immunity considerably because the proportion of infected individuals in groups with
the highest contact rates is greater than that in groups with low contact rates. We estimate that if
R0 = 2.5 in an age-structured community with mixing rates fitted to social activity, then the disease-
induced herd immunity level can be ~43%, which is substantially less than the classical herd immunity
level of 60% obtained through homogeneous immunization of the population. Our estimates should
be interpreted as an illustration of how population heterogeneity affects herd immunity rather than as
an exact value or even a best estimate.

S
evere acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has spread glo-
bally despite themany different preventive
measures that have been put in place
to reduce transmission. Some countries

aimed for suppression by extreme quarantine
measures (lockdown) and others aimed for
mitigation by slowing the spread using certain
preventive measures in combination with pro-
tection of the vulnerable (1). An important
question for both policies has been when to
lift some or all of the restrictions. A closely
related question is if andwhen herd immunity
can be achieved. Herd immunity is defined as
a level of population immunity at which dis-
ease spreading will decline and stop even after
all preventive measures have been relaxed. If
all preventive measures are relaxed when the
immunity level from infection is below the herd
immunity level, then a secondwave of infection
may start once restrictions are lifted.
By 1 May 2020, some regions and countries

reached high estimates for the population im-
munity level; for example, 26% of the popula-
tion was infected (with a large confidence
interval) in themetropolitan Stockholm region,
as shown by a mathematical model (2). At the
same time, population studies in Spain showed
that in the second half of May 2020, >10% of
the population of Madrid had antibodies for
coronavirus disease 2019 (COVID-19) (3). It is
debatable whether (classical) herd immunity
for COVID-19, which is believed to lie between
50 and 75%, can be achieved without unaccept-
ably high case fatality rates (4–6).
The definition of classical herd immunity

originates from mathematical models for the
impact of vaccination. The classical herd im-

munity level hC is defined as hC = 1 – 1/R0,
where R0 is the basic reproduction number,
defined as the average number of new infec-
tions caused by a typical infected individual
during the early stage of an outbreak in a fully
susceptible population (7). Thus, if a fraction v
is vaccinated (with a vaccine giving 100% im-
munity) and vaccinees are selected uniformly
in the community, then the new reproduction
number isRv = (1 – v)R0. From this, the critical
vaccination coverage vc = 1 – 1/R. So, if at least
this fraction is vaccinated and hence immune,
the community has reached herd immunity
becauseRv ≤ 1 and no outbreak can take place.
If the vaccine is not perfect but instead re-
duces susceptibility by a fraction E (so E =
1 corresponds to 100% efficacy), then the
critical vaccination coverage is given by vc =
E–1(1 – 1/R0) (7), implying that a bigger frac-
tion needs to be vaccinated if the vaccine is
not perfect.
No realistic model will depict human pop-

ulations as homogeneous; there are many
heterogeneities in human societies that will
influence virus transmission. Here, we use a
model to illustrate how population hetero-
geneity can cause substantial heterogeneity
among the people infected during the course
of an infectious disease outbreak, with con-
sequent impact on the herd immunity level
and the performance of exit policies aimed
at minimizing the risk of future infection
spikes.
One of the simplest of all epidemic mod-

els is to assume a homogeneously mixing
population in which all individuals are
equally susceptible and equally infectious
if they become infected. Before becoming
infectious, infected individuals first go through
a latent/exposed period, i.e., the susceptible-
exposed-infected-recovered (SEIR) model
(7). The basic reproduction number R0 de-

notes the average number of infectious con-
tacts that an infected individual has before
recovering and becoming immune (or dy-
ing). An infectious contact is defined as one
close enough to infect the other individual
if this individual is susceptible (contacts
with already infected individuals have no
effect).
To this simple model, we add two impor-

tant features known to play an important role
in disease spreading (themodel is described in
full detail in the supplementary materials).
The first is to include age structure by dividing
the community into different age cohorts with
heterogeneous mixing between them. We cat-
egorized a community into six age groups and
fit contact rates derived from an empirical
study of social contacts (8) (see the supple-
mentary materials for details on the commu-
nity structure). The person-to-person infectious
contact rate between two individuals depends
on the age groups of both individuals. The
average number of infectious contacts that
an infected person in age group i has with
individuals in (another or the same) age group
jnow equals aijpj, where aij reflects both how
much an i individual has contact with a spe-
cific j individual. It also reflects the typical
infectivity of i individuals and susceptibility
of j individuals. The population fraction of
individuals belonging to age cohort j is de-
noted by pj.
The second population structure element

that we added to the simple model catego-
rizes individuals according to their social
activity level. A common way to do this is by
means of network models [e.g., (9)]. Here,
we take a simpler approach and categorize
individuals into three different activity lev-
els, which are arbitrary and chosen for il-
lustration purposes: 50% of each age cohort
have normal activity, 25% have low activ-
ity corresponding to half as many contacts
compared with normal activity, and 25%
have high activity corresponding to twice as
many contacts as normal activity. By this
we mean that, for example, a high-activity
individual in age group i on average has
2*aijpj*0.5*0.25 infectious contacts with
low-activity individuals of age group j. The
factor 2 comes from the infective having high
activity, the factor 0.5 from the contacted
person having low activity, and the factor
0.25 from low-activity individuals making
up 25% of each age cohort. The basic repro-
duction number R0 for this model is given
by the dominant eigenvalue of the (next-
generation) matrix M having these elements
as its entries. (7).
The final fractions of the different groups

in the population becoming infected in the
epidemic are obtained by solving a set of
equations (the final size equations are pro-
vided in the supplementary materials). To
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be able to say something about the time
evolution of the epidemic, we assume a clas-
sical SEIR epidemic model. More precisely,
we assume that individuals who get infected
are initially latent for a mean of 3 days, fol-
lowed by an infectious period of a mean of
4 days, thus approximately mimicking the
situation for COVID-19 [e.g., (1)]. During the
infectious period, an individual makes infec-
tious contacts at rates such that the mean
numbers of infectious contacts agreewith those
of the next-generation matrix M.
In the model, we assume that the basic re-

production number satisfies R0 = 2.5 (a few
other values are also evaluated) and that
the epidemic is initiated with a small frac-
tion of infectious individuals on 15 February.
On 15March, when the fraction infected is still
small, preventive measures are implemented
such that all averages in the next-generation
matrix are scaled by the same factor a < 1,
so the next-generation matrix becomes aM.
Consequently, the new reproduction num-
ber is aR0. These preventivemeasures are kept
until the ongoing epidemic is nearly finished.
That is, all preventive measures are relaxed
thus setting a back to 1 on 30 June. If herd
immunity is not reached, then there will then
be a second wave, whereas if herd immunity
has been achieved, the epidemic continues to
decline.
We used the model to investigate the effect

of the preventive measures and, for two
scenarios, we analyzed whether a given level
of preventive measures yields disease-induced
herd immunity. We did this for populations
that are (i) homogeneous, (ii) categorized by
age groups but not by activity levels, (iii) not
categorized by age but assigned different ac-
tivity levels, and (iv) have both age-related and
activity structures.
For each of the four population structures

described above, we show overall disease-
induced herd immunity in Table 1. This was
obtained by assuming that preventive mea-
sures having factor a < 1 are implemented
at the start of an epidemic, running the re-
sulting model epidemic to its conclusion and
then exposing the population to a second
epidemic with a = 1. We obtain a

*
, the great-

est value of a such that a second epidemic
cannot occur. The disease-induced herd im-
munity level hD is given by the fraction of the
population that is infected by the first epi-
demic. This approximates the situation in
which preventive measures are implemented
early and lifted late in an outbreak. Note that
given the next-generation matrix, hD is inde-
pendent of the distributions of the latent and
infectious periods.
As seen in Table 1, all three structured pop-

ulations have lower disease-induced herd im-
munity hD compared with the classical herd
immunity hC, which assumes that immunity

is uniformly distributed among the differ-
ent types of individuals. From the table, it is
clear that the different activity levels have a
greater effect on reducing hD than does age
structure.
In Table 2, the final fractions infected in the

different age activity groups for a = a
*
just

barely reaching disease-induced herd immu-
nity are given. This is done for the age and
activity group structure and assuming R0 =
2.5. The overall fraction infected equals hD =
43.0%, in agreement with Table 1. Table S1 is
a similar table in which only activity groups
are considered.
We also illustrate the time evolution of the

epidemic for R0 = 2.5, assuming both age and
activity structure and starting with a small
fraction externally infected in mid-February.
For this, we show the epidemic over time for
four different levels of preventive measures
put in place early in the epidemic outbreak
(mid-March) and being relaxed once trans-
mission has dropped to low levels (30 June).

In Fig. 1, the community proportion that is
infectious during the course of the epidemic
is plotted.
On 15 March, preventive measures (at four

different levels for a) are put in place and in
every case, the growth rate is reduced except
when no preventative measures are applied
(the blue curve; a = 1). Moreover, the preven-
tive measures reduce the size of, and delay
the time of, the peak. Sanctions are lifted on
30 June, putting transmission rates back to
their original levels, but only in the curve with
highest sanctions is there a clear second wave
because the remaining curves have reached
(close to) herd immunity. The yellow curve
finishes at <50% getting infected. The rea-
son this exceeds the 43% infected shown in
Table 1 is that preventive measures were not
imposed from the start and were lifted before
the epidemic was over. The corresponding cu-
mulative fraction infected as a function of time
is shown in Fig. 2. An interesting observation
is that the purple curve results in a higher
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Fig. 1. Overall fraction
infected over time. Shown is
a plot of the overall fraction
infected over time for the age
and activity structured com-
munity with R0 = 2.5 for
four different preventive
levels inserted 15 March
(day 30) and lifted 30 June
(day 135). The blue, red,
yellow, and purple curves
correspond to no, light,
moderate, and severe
preventive measures,
respectively.
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Fig. 2. Cumulative fraction
infected over time. Shown is
a plot of the cumulative
fraction infected over time for
the age and activity structured
community and R0 = 2.5 for
four different preventive
levels inserted 15 March
(day 30) and lifted 30 June
(day 135). The blue, red,
yellow, and purple curves
correspond to no, light,
moderate, and severe
preventive measures,
respectively.
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overall fraction infected even though this sce-
nario had more restrictions applied than the
scenario of the yellow curve. This is because
this epidemic was further from completion
when sanctions were lifted.
Only the curve corresponding to greatest

preventive measures shows a severe second
wavewhen restrictions are lifted. Inmost cases,
no (strong) second wave of outbreak occurs
once preventive measures are lifted. Note also
that the yellow curve, in which the overall
fraction infected is well below the classical
herd immunity level hC = 60%, is in fact pro-
tected by herd immunity because no second
wave appears. See the supplementary mate-
rials for depictions of when restrictions
are lifted continuously between 1 June and
31 August (figs. S1 and S2) and how the ef-
fective reproduction number evolves as a func-
tion of the time when restrictions are lifted
(fig. S3).
Our simple model shows how the disease-

induced herd immunity levelmay be substantially
lower than the classical herd immunity level
derived frommathematicalmodels assuming
homogeneous immunization. Our application
to COVID-19 indicates a reduction of herd
immunity from 60% under homogeneous
immunization down to 43% (assuming R0 =
2.5) in a structured population, but this should
be interpreted as an illustration rather than as
an exact value or even a best estimate. Future
efforts need to be made to quantify more
precisely the size of this effect.

In our model, we have taken age cohorts
and social activity levels into account. How-
ever, more complex and realistic models have
many other types of heterogeneities; for in-
stance, increased spreading within households
(of different sizes) or within schools and work-
places. These activity levels and social struc-
tures are country or region specific and should
be modeled as such. Further, spatial heteroge-
neity arises, with rural areas having lower
contact rates than metropolitan regions. It
seems reasonable to assume that most such
additional heterogeneities will have the effect
of reducing the disease-induced immunity
level hD even further. This is because in high-
contact environments such as metropolitan
regions, large households, and large work-
places, there will be a higher infected frac-
tion and immunity will be concentrated even
more among highly active and connected in-
dividuals. Some complex models [e.g., (1)]
categorize by, for example, age and spatial
location but omit individual variation with-
in each category. The latter can be incor-
porated by including different activity levels
or by adding a social network in which in-
dividuals have differing numbers of acquain-
tances. As we have illustrated, differences in
social activity play a greater role in reducing
the disease-induced herd immunity level
than heterogeneous age-group mixing. There-
fore, models excluding such features will
see a smaller difference between hD and hC.
Our choice of 50% having average activity,

25% having half activity, and 25% having
double activity is of course arbitrary. An im-
portant future task is to determine the size
of differences in social activity within age
groups for different types of populations. The
greater the social heterogeneity there is be-
tween groups, the greater the difference be-
tween hD and hC.
One assumption of our model is that pre-

ventive measures act proportionally on all con-
tact rates, and this may not always hold. For
example, most countries aim to protect elder-
ly and other high-risk groups, which does not
obey this assumption. Again, we expect that
the effect of discriminatory protection would
be to reduce the disease-induced immunity
level because the oldest age group has the few-
est contacts. For a model including schools
and workplaces, it is not obvious what effect
school closure and strong recommendations
towork fromhomewould have on the disease-
induced herd immunity level. A differentmod-
el extension would be to allow individuals to
change their activity levels over time. The ef-
fect of such changes in activity levels, par-
ticularly whether they vary between different
categories, remains unknown.
In ourmodel, we assume that infection with

and subsequent clearance of the virus leads to
immunity against further infection for an ex-
tended period of time. If there is relatively quick
loss of immunity, or if we want to consider a
time scale inwhich the impact of demographic
processes such as births and people changing
age groups becomes substantial, then we need
further models.
Different forms of immunity levels have

been discussed previously in the literature,
although, as far as we know, not when con-
sidering early-introduced preventions that
are lifted toward the end of an epidemic
outbreak. Anderson and May (10) concluded
that immunity level may differ among uni-
formly distributed, disease-induced, and opti-
mally located immunity [see also (11)], and
vaccination policies selecting individuals to
immunize in an optimal manner have been
discussed in many previous studies [e.g., (12)].
A recent independent study by Gomes et al.
(13) reported results similar to those of the
present study but considers heterogeneities
in terms of continuously varying susceptibil-
ities. That model is solved numerically in a
manner similar to our Fig. 1, but the analyt-
ical results for the final number of infected
people and hD are missing.
Rather than lifting all COVID-19 preven-

tive measures simultaneously, most coun-
tries are lifting restrictions gradually. That
strategy can prevent the type of overshoot
illustrated by the purple curve in Fig. 2,
which results in a greater fraction infected
than if milder restrictions are enacted (yel-
low curve).
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Table 2. Final outcome fractions infected in different groups. These values assume that R0 = 2.5
and preventive measures are put in place such that a = a

*
just barely reaching herd immunity for R0 =

2.5. Population structure includes both age and activity. Numbers correspond to percentages.

Age group Low activity Average activity High activity

0–5 years 17.6 32.1 53.9
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

6–12 years 25.8 44.9 69.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

13–19 years 31.4 52.9 77.8
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

20–39 years 27.4 47.2 72.1
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

40–59 years 22.8 40.3 64.4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

≥60 years 14.6 27.0 46.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Table 1. Disease-induced herd immunity level hD and classical herd immunity level hC for
different population structures. Numbers correspond to percentages.

Population structure
R0 = 2.0 R0 = 2.5 R0 = 3.0

hD hC hD hC hD hC

Homogeneous 50.0 50.0 60.0 60.0 66.7 66.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Age structure 46.0 50.0 55.8 60.0 62.5 66.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Activity structure 37.7 50.0 46.3 60.0 52.5 66.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Age and activity structure 34.6 50.0 43.0 60.0 49.1 66.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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